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A direct and efficient parallel-shooting method is given for the solution of the spherical 
harmonics approximation to the neutron transport equation in spherical geometry 
with arbitrary anisotropic scattering and source. The special numerical difficulties due 
to the singularity at the center of the sphere are solved in a simple and efficient way. 
The algorithm “measures” the roundoff instability of the problem and eliminates it by 
performing a minimum of matrix transformations that ensure the linear independence 
of the matrix columns. 

I. INTRODUCTION 

We present a new direct method for the numerical solution of the spherical 
harmonics approximation to the neutron transport equation in spherical geometry 
with arbitrary anisotropic scattering and source. The spherical harmonics equations 
in spherical geometry are an essentially different problem than for slab geometry; 
this is because the center of the sphere is a singular point of the equations. Although 
the singularity does not create any difficulty for the analytic solution of the 
continuous equations for homogeneous spheres with isotropic scattering, the 
treatment of the center in the finite-difference approximation to the equations 
presents very severe numerical difficulties not encountered in slab geometry [l]. 
The finite-difference approximation has considerable practical importance because 
it can be used to obtain solutions for problems in inhomogeneous media with 
arbitrary anisotropic scattering. 

The main new result of this work is to extend to spherical geometry the direct 
parallel or multiple-shooting method developed recently for slab geometry [2, 31, 
after modifying it properly to account for the singularity at the center. Although 
there are certain formal similarities between the treatment given here and our 
previous work in slab geometry, the numerical solution of the transport equation 
in spherical geometry poses a problem which is quite different than in slab geometry. 
One essential property of the method used is that it allows us to define stabilizing 
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NEUTRON TRANSPORT IN SPHERES 381 

transformations when marching only in one direction, i.e., from the sphere’s 
boundary to its center. As the singularity at the center does not allow marching 
from the center toward the surface, other multiple shooting methods that require 
marching in both directions across the domain are not applicable to problems 
with singular points; this is for example the case of the stabilized march technique 
of Lucey and Hansen [4]. 

The known numerical instability of a simple direct solution of the spherical 
harmonics equations is due to the existence of independent solutions which grow 
and decay exponentially with distance, this instability is common to slab and 
spherical geometries; for spheres, we have the added instability due to the 
singularity at the center. The spherical harmonics equations are first reduced by 
finite differences to an algebraic problem in block form. The numerical instability 
is then eliminated by performing linear transformations of the matrices of the 
problem, which ensure the linear independence of the matrix columns. The main 
novelty and advantage of the method lies in that only a minimum number of matrix 
transformations is performed, the precise number being determined dynamically 
and efficiently by the program itself in the course of the computation. Thus, in 
stable problems where the algorithm does not encounter instability, the optimal 
direct solution is obtained without performing any matrix transformations 
whatever. The presentation of this paper follows closely that given in [2] for slab 
geometry. 

Results of criticality and critical length computations are given both for stable 
and unstable problems with isotropic and anisotropic scattering. These results 
compare very favorably in accuracy and efficiency with those obtained by the S, 
method of Carlson and co-workers [5, 61. 

II. THE TRANSPORT EQUATION IN SPHERICAL GEOMETRY 

spherical geometry with arbitrary anisotropic The Boltzmann equation in 
scattering and source reads [7, 8 I 

= s1 zs(x> CL, CL’) 4(x, p’) dp’ + Sk t-4, 
-1 

(1) 

where x is the distance from the center of the sphere; TV is the cosine of the angle 
between the neutron velocity and the radius vector; 4(x, p) is the angular flux; 
Z*(x) is the total cross section; Z,(x, CL, p’) is the scattering cross section from p’ 
to p; and S(x, p) is the anisotropic neutron source. The derivation of the spherical 
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harmonics approximation to Eq. (1) is standard and can be found in detail in [8, 91. 
Briefly, in the PL approximation the spherical harmonics equations are obtained 
by expanding 

(2) 

(3) 

(4) 

where p. is the cosine of the angle between the neutron velocities in the directions 
p’ and CL, and P,(p) are the Legendre polynomials. If we substitute (2), (3), and (4) 
into (l), and perform the necessary angular integrations using the addition theorem 
for the Legendre polynomials and their orthogonality properties, we obtain the 
spherical harmonics equations in the Pr. approximation: 

A df(x) du + + Bf + C(x)f = s(x). 
, (5) 

The vectors f(x), s(x) and the matrices A, B, and C(x) are given explicitly in 
Appendix A. Equations (5) are a system of L + 1 inhomogeneous ordinary 
differential equations. Their general solution has L + 1 arbitrary constants of 
integration, which are determined by imposing L + 1 appropriate boundary 
conditions. 

A. Boundary Conditions 

The interface and boundary conditions are discussed in [8, 93. For odd-L 
approximations, the spatial momentsf, are continuous across interfaces of different 
media. The simple requirement that the solution of (5) must be everywhere finite 
yields exactly (1/2)(L + 1) conditions which eliminate (1/2)(L + 1) constants of 
integration. As a consequence, at the center of the sphere one has 

.fdO) = 0 I = 1) 2,. ..) L, (6) 

i.e., the angular flux is isotropic (see Eq. (2)), which is clear on physical grounds. 
The vacuum boundary condition at the sphere’s surface requiring that no neutrons 
return from the vacuum, 

m, PL) = 0 p < 0, (7) 
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cannot be exactly satisfied by any finite expansion (2). Two commonly used 
approximate boundary conditions due to Marshak [8] and Federighi [lo] can both 
be written in the form 

fo(R) = Gf@), (8) 

where the subindexes o and e designate the odd and even components of the 
vectors, i.e., 

fo(R) = (9) 

and the two approximations differ in the elements of the square (1/2)(L + 1)-order 
matrix G, for which values are available [lo, 31. The relative merits of both 
approximations have been discussed by a number of authors [l&14]. 

To summarize, the spherical harmonics equations (5) are a two-point boundary 
value problem for a system of ordinary differential equations with left boundary 
conditions (6) and right boundary conditions (8). The direct numerical solution of 
this problem is the subject of the remaining sections of this paper. 

B. Effects of the Singularity 

Before obtaining a finite-difference approximation to Eqs. (5), it is essential 
to consider the effects of the singularity at the sphere center on the spherical 
harmonics equations. Just as for slab geometry, it is convenient to premultiply 
Eq. (5) by A-l and obtain 

(mww + t 1 i-4 Mf + WY = VW, (10) 

where we have used the following definitions 

M = A-IB, N(x) = A-T(x), v(x) = A-%(x). (1W 

Briefly, given the angular flux at the center Jo(O) [see Eqs. (2) and (6)], it is not 
possible to obtain from this the momentsf,(x) in some neighborhood of the center. 
The proof of this fact was given by Gelbard et al. for the discrete ordinates 
approximation to the neutron transport equation [7], but it applies also to the 
spherical harmonics equations as both formulations are equivalent. If we expand 
the moments and source term in Eqs. (10) in a Taylor series about the center of the 
sphere, x = 0, we get 

f(x) = f dlzxn, v(x) = 5 e,xn. 
72=0 ?I=0 

(11) 
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Substituting (11) into (IO), we find 

W + M) d, + Nd,-, = en-, , II = 1 , 2 ,...) “3, (12) 

where it has been assumed that the cross sections are constant in some neigh- 
borhood of the center. We have found [15] that the eigenvalues of the matrix M 
are 0, 2, -2, 4, -4,..., -(L - I), (L + I); thus, for any approximation higher than 
P -2 is an eigenvalue of M and the matrix nZ$ M, n = 2, is singular. 
Eiuation (12) shows then clearly that it is impossible to determine d2 . Physically, 
as the angular flux is isotropic at the center, it is given only by one single number 
(i.e., the scalar flux), and this is not enough to determine the angular flux in the 
neighborhood of the center. This means that it is not possible to develop a numerical 
algorithm that will construct the solution of the spherical harmonics equations by 
marching from the sphere center to its boundary. To circumvent this difficulty 
associated with the singularity, it is known that numerical algorithms can be 
developed which starting with the solution at the boundary, obtain the rest of the 
solution by marching toward the center. However, when the cross sections pi 
[see (A8)] are space independent, a simple direct numerical integration of (10) is 
unstable because the roundoff errors grow exponentially with distance. This is 
because some of the eigenvalues of N are real and occur in positive and negative 
pairs [8]. This basic numerical instability of the spherical harmonics equations is 
known to exist also for nonhomogeneous problems when the matrix N(x) is space 
dependent. The main contribution of this work is to have developed a direct and 
numerically stable method which obtains the solution by marching from the sphere 
boundary to its center. 

111. ALGEBRAIC PROBLEM FOR THE SPHERICAL HARMONICS EQUATIONS 

As the solution of the finite-difference approximation is to be obtained by 
marching from the sphere’s surface to its center, it is convenient to use a spatial 
mesh where distances are measured from the surface. The simplest way to obtain 
a finite-difference approximation to Eqs. (IO) is to difference them centrally, so as 
to get 

fj - fj-1 + [hj-J(Xj-1 + x,)] M(fj-1 t fj> + (l/2) h,-lNj-l(fj-l + fj> 

= (I /2) hj_l(Vj&l + Vi); ,j = 2, 3 )...) n, (13) 

where the index .j = 1 corresponds to the sphere’s surface etc., and j = n to its 
center. In discrete form, the boundary conditions at the sphere’s surface and center, 
Eqs. (8) and (6) can be expressed respectively as 

(fi)o = W,)e , (f,)cl = 0. (14) 



NEUTRON TRANSPORT IN SPHERES 385 

It should be remarked that although we know that all moments at the sphere center 
except the first are zero [Eq. (6)], in discrete form we only require that the odd 
components be zero [see second equation in (14)]; this is necessary so as to have a 
well posed algebraic problem with the same number of equations as unknowns. 
The fact that we compute the other components not assumed zero, i.e., 
,f2(0),,f4(O),...,f~--1(O), provides a built-in check of the numerical accuracy of the 
algorithm, because we should get at the center&(O) = ,fI(O) = ... = fLPI(0) = 0. 
In our calculations, the computed values for all these moments are of the order of 
lO-6 or less in double precision; this is to be contrasted with other methods where 
the numerical inaccuracies result in a scalar flux with its maximum slightly displaced 
to the right of the sphere’s center [I]. 

The algebraic problem defined by Eqs. (13) and (14) is now in a similar form to 
that obtained before for slab geometry (see Eqs. (14) and (15) of [2]). Its solution, 
from this point, is almost identical to that given in [2] for plane geometry, and the 
reader might consult this reference for more details. 

As the boundary conditions (14) separate sharply the even from the odd com- 
ponents of f at the boundary points, it is convenient to rearrange the solution 
vectors fj throughout the grid, putting the even and odd components at the top and 
bottom halves, respectively. This simplifies the analysis of the algebraic system (13) 
and (14). We thus use the definitions 

(15) 

Dj-l,f-1 GE [-I + hj-lM/(Xj-1 + Xj) + (l/2) hj-lNj-j]‘, (16) 

Dj-l,j E [I + hj-lM/(Xj-1 + Xj) + (l/2) hj&llVj-I]‘, (17) 

wj-1 = (l/2) h,-1(Vj-1 + v,), (18) 

where the primes denote the reordering of the columns of the matrices inside the 
parentheses by parity, i.e., the first half of the columns of the D’s are the 
Ist, 3rd, 5-th ,..., L-th columns of the matrix inside the parentheses, and the second 
half are the 2nd, 4-th, 6-th ,..., (L + I)-th columns. Using (15) (I 6) (I 7) and (1 S), 
we write the algebraic problem (13) and (14) in full: 

Dn--l,n-a-1 + Dn-l,ngn = wn-1 

i-3 
b 

= Gglt, gnb = 0, (19) 
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where the superscripts b and t designate the bottom and top halves of the respective 
vectors, the D’s are space-dependent (L + I)-th order square matrices, and the g’s 
and w’s are (L + I)-component column vectors. 

One attractive property of the spherical harmonics method is that the algebraic 
problem (19) can be generated numerically from the analytic formulas given in the 
text, independently of the number of terms L + 1 (PL approximation) kept in 
the expansions (2), (3), and (4); it should also be noted that the form of (19) and 
therefore its solution remain the same independently of the anisotropy of the 
scattering cross section and of the source. Finally, it can be shown that the finite- 
difference approximation used is O(h2), where h is the mesh size. 

IV. DIRECT SOLUTION OF ALGEBRAIC PROBLEM 

The essential difference between the algebraic problem (19) and the corresponding 
one for plane geometry (Eq. (19) of [2]) is that the D matrices in (19) are a function 
of distance, whether the sphere is homogeneous or nonhomogeneous. Therefore, 
the direct solution of (19) always requires the inversion of one D matrix for each 
row of the block system (19). Otherwise, the solution of (19) is almost identical to 
that of Eq. (19) of [2], and is now described briefly for the sake of clarity. The 
very simple structure of (19) suggests an obvious direct solution by substitution. 
We first define the following sequence of rectangular matrices of order 
(L + 1) x W2)CL + I>: 

In (20) FI is chosen so as to satisfy the left boundary conditions [its upper half is 
the unit matrix and its lower half is the boundary condition matrix G in (19)]; the 
other terms in the sequence are found by substitution in (19) without the inhomo- 
geneous terms. By substitution in the full inhomogeneous system (19), we define 
the following sequence of (L + I)-component vectors 

a, = 0, a2 = &h-v, + rlal , a3 = D;iw2 + n2a2 ,..., 

a, = D;!I,n~,-l + n-,-1an--1 . 
(21) 

If the vector l1 designates the upper half of g, (the lower half is Gl, from the left 
boundary condition), then the exact mathematical solution of (19) is 

gi = FJ, i ai , i = 1, 2,.. .) n. (22) 
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where the (1/2)(L + I)-component vector lI is the solution of the inhomogeneous 
system of equations 

F,,bI, = -anb, (23) 

obtained using the right boundary condition; the superscript b designates the lower 
half of the corresponding matrices and vectors. This method is the discrete finite- 
differences analog of the well-known simple shooting technique based on initial 
value problems [ 161. 

As discussed in the previous sections, in many problems the computation of this 
exact solution is unstable against the propagation of roundoff errors. These errors 
result in many cases in the extreme ill-conditioning of the matrix Fnb in the left of 
Eq. (23) making its numerical solution impossible. The degree of numerical 
instability depends on many variables, such as the sphere radius (in units of mean 
free paths), the anisotropy of the scattering cross section, the order of the Pt 
approximation, etc. As it is not possible to know a priori how unstable a given 
problem is, it is then imperative to “measure” the instability during the computation 
and eliminate it in the most efficient way. 

A. Stabilizing Transformations 

The idea behind the stabilizing transformations is quite simple: the exact 
mathematical solution of our problem (19), given by (22) and (23), is to be trans- 
formed so that the new solution is given only in terms of matrices and vectors that 
are arbitrarily well conditioned for computation. Obviously, the transformed 
solution has to be mathematically identical to the untransformed solution. 

Although the stabilizing transformations are achieved by rather complicated 
linear algebra manipulations, the underlying idea behind them is very simple. 
It is to be noticed that the starting matrix and vector Fl and a1 of the sequences (20) 
and (21) are perfectly well conditioned because their tops are the unit matrix and 
null vector, respectively, and thus the columns of Ijl and a, form a set of linearly 
independent vectors. As the computation of the sequences F$ and a, proceeds, 
the columns of F, and ai progressively become more linearly dependent. However, 
before the sequences become too ill-conditioned, certain linear transformations 
of Fc, and ae, are performed at a conditioning point ci (see Fig. 1) with the result 

Surface Center 

Cl 
+-2 

. l . c/-4 ci-3c,;.2c,~.’ 7, 

1 n 

FIG. 1. Illustration showing the j conditioning points with a higher density near the sphere’s 
center. 
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that the tops of the transformed or reconditioned matrix and vector UC, and II,:< are 
reset again equal to the unit matrix and the null vector [see Eqs. (B3) and (B4)]. 
The process of computation of the matrix and vector sequences is restarted anew 
from the well conditioned pair lJcc and u,~ . So, by a proper frequency of condi- 
tioning, we can assure that our matrix and vector sequences are arbitrarily well 
conditioned, and the numerical instability is thus eliminated. 

In [2], it is shown that the solution of (19) can be given in the well conditioned 
form 

where the (1/2)(L + I)-component vectors 1, are given by 

It-1 = T&c - t,,), k=2,3 ,..., j-1, 

zj-1 = T,(Zj - t,>, (26) 

and lj is the solution of the following system of equations: 

U,blj = -I&b. (27) 

For completeness and reference, the transformation matrices and vectors T, and t, 
and the reconditioned matrices and vectors Uci and u,; are given explicitly in 
Appendix B. 

Once Zj is obtained by solving the arbitrarily well-conditioned system of 
equations (27), all the other I vectors are obtained recursively from the 
formulas (26); therefore, the solution vectors gc, at all the conditioning points are 
obtained from (25) by solving only one system of equations, i.e., (27). This method 
is the finite-difference analog of the multiple shooting technique for the solution of 
two-point boundary value problems [16], and is based on the extension and 
generalization of previous methods due to Godunov [17] and Conte [18]. 

B. The Numerical Algorithm 

The numerical algorithm for the direct solution of (19) is essentially the same 
as that discussed in considerable detail in [l], to which we refer the reader. Briefly, 
the first step is the computation of the untransformed (simple shooting) solution 
of (19) given by (22) and (23). The solution of (23) is obtained by a linear system 
solver (LINSYI) based on gaussian elimination with pivoting and iterative 
improvement of the solution, as described by Forsythe and Moler [19]. If system 
(23) is well conditioned, as determined by LINSYl, its solution gives the angular 
flux at the sphere’s surface g, , and the solution at the other mesh points are 



NEUTRON TRANSPORT IN SPHERES 389 

obtained by substitution in (19). Instead, if (23) is ill-conditioned in the sense 
discussed in [19], LINSYl sets a signal for the main program; then the spatial 
grid (see Fig. 1) is divided into two marching intervals by a reconditioning point 
inside the grid c2 . The reconditioning transformations at cp and at the sphere 
center, cQ = IZ, require the numerical inversion of the matrices Fe”, and FntTITCB 
[see (Bl) and (B3)]; only when k: is inverted by LINSYl without any error 
messages is the Ucp matrix computed*and stored, and the computation is continued 
to the sphere center. Whenever thejrst ill-conditioned matrix is detected, the sweep 
is immediately stopped and the number of marching intervals doubled. The 
procedure is pursued in this way until all the matrices involved in a given sweep 
are well-conditioned. Finally, the well-conditioned system (27) is solved, and the 
solution obtained at all the conditioning points by means of (26) and (27). In 
between conditioning points the solution is obtained by marching (substitution) 
through the inhomogeneous system (19). 

V. NUMERICAL RESULTS AND DISCUSSION 

A. Isotropic Scattering Problems 

We first give the results of critical length computations for homogeneous 
spheres with isotropic scattering; exact values for the critical radii have been 
published by Carlson and Bell [5], and approximations obtained with the S, method 
are reported in the recent book by Bell and Glasstone [6]. The transport equation 
solved is 

with the boundary conditions, 4(x, p) finite and 

In (28) c is the average number of neutrons emitted per collision. For a given c, 
the critical length problem is to determine the sphere radius in units of mean free 
paths such that the steady-state equations (28) and (29) are satisfied [2]. 

The results of the computations for all the values of c given in [5] are shown 
in Table I. The most numerically unstable problems are those for the thicker 
spheres, and the table illustrates the power and efficiency of our method for 
automatically selecting the required number of reconditioning points. Except for 
the case c = 1.02, it is seen that Federighi’s boundary conditions give closer 
agreement with the exact values than Marshak’s; this effect was already observed 
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TABLE 1 

Sphere Critical Radii in Units of Mean Free Paths. Isotropic Scattering 

Order of Approximation” 
Secondary 

neutrons per p3 p5 
collision, Boundary conditions Boundary conditions & b Exactc 

c Marshak Federighi Marshak Federighi 

1.02 12.026(2) 
1.05 7.280(O) 
I.1 4.875(O) 
1.2 3.174(O) 
1.4 1.9868(O) 
1.6 1.4770(O) 
1.8 1.1839(O) 
2.0 0.991 l(0) 

12.023(2) 
7.276(O) 
4.872(O) 
3.172(O) 

1.9857(O) 
1.4764(O) 
1.1835(O) 
0.9908(O) 

12.025(g) 
7.278(4) 
4.874(4) 
3.173(O) 
I .9859(O) 
1.4765(O) 
1.1836(O) 
0.9908(O) 

12.023(g) 1 12.032 12.027 
7.276(4) 7.276 7.277 
4.873(4) 4.871 4.873 
3.172(O) 3.170 3.172 
1.9855(O) 1.983 1.9855 
I .4762(O) 1.474 1.4761 
1.1834(O) 1.1833 
0.9907(O) 0.9906 

a The number of reconditioning points required is given in parentheses; double precision 
arithmetic; 64 equal space intervals. 

* Ref. [6], with 64 equal space intervals. 
c Ref. [5]. 

both in the neutron transport and radiative transfer computations done in plane 
geometry [2, 31. It is known [6] that the S,, approximation is mathematically 
equivalent to a PI5 approximation (both are a two-point boundary value problem 
for a system of 16 differential equations). The reason why our P3 computations 
give better results than the S,, computations performed by Lee [6] is because he uses 
Mark boundary conditions and these are known to give much poorer answers than 
Marshak’s or Federighi’s. It is seen that our P5 computations with Federighi’s 
conditions agree with the exact values to almost five significant figures. 

To give an idea of the efficiency of the method, we have timed some of the 
computations given in Table I in an IBM 360/195 computing system. The P5 
computation for c = 1.02 required IO set of computer time; in this case the system 
of equations (19) where the D matrices are 6 x 6, had to be solved 143 times 
because of the slow convergence of the power method (Rayleigh quotients) for the 
determination of the criticality eigenvalue of each successive size [2]. The P, 
computation for c = 2.0 required 3 set of computer time; in this case, the system 
(I 9) had to be solved only 15 times. 

In Table II, we give the results of some criticality computations for some spheres 
with isotropic scattering. Once the radius R is fixed, the problem is to determine 
the average number of neutrons emitted per collision which are necessary to 
maintain criticality. The aim of these computations was to compare the accuracy 
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TABLE II 

Number of Secondary Neutrons (c) per Collision Necessary to Maintain Criticality as a Function 
of the Sphere Radius R (in Mean Free Paths). Isotropic Scattering 

Number of Secondaries, c 

R 
IT,a 

Method Computer time (set) 
IBM 3601195 

s*‘” ha Pab 

0.1 13.4286 13.32 13.39 13.4296 0.6 
0.5 3.23718 3.219 3.230 3.23746 0.8 
1.0 1.98839 1.981 1.986 1.98860 0.9 
5.0 I .09576 1.0955 1.0957 1.09575 2.8 

10.0 1.02815 1.0228 1 1.02282 1.02814 6.3 

a See Ref. [20]. 
D With Federighi’s boundary conditions and 64 equal space intervals. 

and efficiency of our method with the recent IT,,, method of Hembd and Kschwendt, 
and with the S, method [20]. As ours is a completely general method, for a fixed P,,, 
approximation the computer time required is exactly the same whether the 
scattering is isotropic or anisotropic. For the radii 0.1, 0.5, and 1 .O, our P3 compu- 
tations with Federighi’s boundary conditions agree to five significant figures with 
the IT, computations; for the radii 5.0 and 10.0, the agreement is of six significant 
figures. The computer time given in Table II is to be compared with that required 
by the IT, method, which is of about 1 set in an IBM 360/65 [20]. The reason for 
the considerably higher accuracy of our P3 results compared with the S, and S,, 
results is the same as discussed before in connection with Table I. 

B. Anisotropic Scattering Problems 

We have obtained the critical radii of some homogeneous spheres with aniso- 
tropic scattering. Explicitly the transport equation solved was the following: 

+ Zs”niso i. #n + 1) b,P,(p.) j:l P&‘) $(x9 P’) dv.‘, (30) 
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with the same center and vacuum boundary conditions used for the isotropic 
problems [see (28) and (29)]. For given values of the secondary neutron ratio 
c + c’, where 

c zzz qiso (31) 

is the anisotropic-scattering ratio, and 

is the isotropic secondary-neutron ratio, the critical length problem is again to 
determine the sphere radii such that the steady-state equation (30) with the proper 
boundary conditions are satisfied. The values of b, are those for elastic hydrogen 
scattering 

b, = 1, b, = 213, b, = 114, b, = 0, 6, = - l/24. (33) 

For a given value of c + c’, c is increased to observe the effects of the anisotropy 
of the scattering. The results of our PL computations are shown in Table III, 
where they are compared with S,, computations done by Lathrop [21]. For the 
secondary neutron ratio c + c’ = 1.05, the agreement between our P, compu- 
tations with Federighi’s conditions and the S,, computations is of almost five 
significant figures. It should be recalled that mathematically, S,, computations are 
equivalent in principle to P,, computations; for this case c + c’ = 1.05, the 
spherical harmonics method with Federighi’s conditions provides the solution 
much more efficiently than the S, method. (We should point out, however, that 
we do not know whether lower order S, computations for this problem would 
already have converged to essentially the same results as those given with S,, .) 
When c + c’ = 1.4, the agreement between our P, computations and the S,, 
computations is of four significant figures. Although not as notable as for the case 
c + c’ = 1.05, the efficiency of the spherical harmonics method with Federighi’s 
conditions is considerably higher than that of the S, method. Some typical values 
of the computer time required are also given in the table. 

A very significant difference between the anisotropic P, computations for 
spherical geometry and the corresponding ones for plane geometry [I] has been 
observed. In plane geometry [2, 31 the ill-conditioning of the matrices was mostly 
due to the slab thickness, and always occurred as soon as the marching width 
exceeded a length of the order of one mean free path. For very thick spheres, this 
instability is also observed. This is as expected, because for large radii the l/r term 
in the sphere transport equation is negligible several mean free paths away from 
the center, and the behavior here is close to that for plane geometry. However, 
Table III shows that the numerical instability for the cases c + c’ = 1.4 is much 
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TABLE III 

Sphere Critical Radii in Units of Mean Free Paths. Anisotropic Scattering@ 

c+c,== 1.05 

c p3 
Computer time (set) 

Sn” IBM 360/195 

0.1 7.5012(O) 7.5012 1.1 
0.3 8.0244(2) 8.0246 
0.5 8.6812(2) 8.6815 
0.7 9.5413(2) 9.5419 
0.9 10.7403(4) 10.7415 1.2 

c + c’ = 1.4 

c p9 
Computer time (set) 

&2 IBM 360/195 

0.1 2.0274(8) 2.0267 
0.3 2.1212(8) 2.1205 
0.5 2.2313(8) 2.2304 
0.7 2.3630(g) 2.3620 
0.9 2.5249(8) 2.5238 4.5 

a The Pr computations were done with Federighi’s boundary conditions, double precision 
arithmetic and 64 equal space intervals. The number of reconditioning points required is indicated 
inside the parentheses. 

* K. D. Lathrop, private communication (1970); with 75 equal space intervals. 

worse than for c + c’ = 1.05, despite the fact that the radii are larger in the latter 
cases. In contrast (Table 4 of [l]), there is no instability in plane geometry with the 
same absorption and scattering cross sections for the cases c + c’ = 1.4. We 
observed that for the same transport equation in spherical geometry the origin 
of this instability is due to the singularity at the center. When performing the 
computations for c + c’ = 1.4, it was observed that the matrices became always 
ill-conditioned at the sphere center. To improve the efficiency of our algorithm, 
the density of the conditioning points near the center was increased, in accordance 
with an empirical logarithmic law. In this way, the number of reconditioning 
points required for stability was reduced approximately by a factor of two. 
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APPENDIX A 

The vectors f(x), s(x) and the matrices A, B, and C(x) of the text in Eq. (5) are 
given by 

(Al) 

h(x) = f1 4(x, P) P,(P) dp; (0 
'-1 &J(x) SlG4 . s(x) = . II ) 643) 

SLiX) 

W9 ~7 j-’ Sk CL) Pc(p) dp; H4) 
-1 

0 1 
l/3 0 213 0 

215 0 3/5 

A czz . . . . . . . . . 645) 
L-l L 

0 
2L-1 O 2L- 1 

L 0 
2L + 1 

0 f 

0 0 y 0 1.2 3.4 1 

5 

o 

5 

2.3 4.5 
7 o 7 

; b46) 

. . . 

w - 2w - o 1) 0 UL + 1) _ 
2L - 1 2L- I 

CL - 1w 
2L + 1 

0 
I 
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W-9 

APPENDIX B 

In our well conditioned solution, see Eqs. (25)-(27) of the text, the following 
transformation matrices and vectors were used: 

Tl = Z, 

T,, = (F:2T,)-1 = (F:J-1, 

. . . 

T, = (FntTlTc2 *.* TJ’, 

and 

t, = 0, 

tc, = (a,, - F,,Td = d, , 

. . . 

tn = (aa - FnTlTc2fc2 - ... - FnTlTc2 ... TC,-,tC,Jt, 

(Bl) 

032) 

where the matrix and vector sequences Fi and ai are given in Eqs. (20) and (21) of 
the main text. The sequences of reconditioned matrices and vectors are given 
respectively by 
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I [ 1 G 
iz 1 

F,T, s FJ s Fi i = 2, 3,..., c2 - I 

I 
I 

Ui = (F,bzTd (F&) -’ I i = cz 
(B3) 

FiT,Tc, i = cp + 1, c2 -+ 2,..., c3 - 1 
. . . 

[ 
I 

(FnbTITe, *.. Tc,..,) V’ntT,Tc2 ... Tc,-l1-l I i=q=n 

and 

U + = aca - FC:,,T,TC,tCz - F,,TlTCeT,3t,3 = aC3 - FCBTITC,tCz - UC& ) 
(B4) 

u, = a, - FnT,T,,t,, - FnT,TJ-& - ..* - FnT,T,, ... T,,mIT,t, 

= a, - FnTITc,tc, - ~~TlTczTc$c3 - ..* - FnTl .-’ Tc,_lt,,m, - U,t,, 

where the superscripts t and b designate the top and bottom halves of the respective 
matrix and vector. In between conditioning points, the vector sequence ui is 
determined by substitution in (19) using as starting values the uCk given in (B4) 
[see Eq. (21)]. It is to be noticed that the transformation vectors tck (B2) are chosen 
so that the top halves of the reconditioned vectors (B4) are the null vector. 
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